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Summary. In ecology, a common form of statistical analysis relates a biological variable to
variables that delineate the physical environment, typically by fitting a regression model or one
of its extensions. Unfortunately, the biological data and the physical data are frequently ob-
tained from separate data sources. In such cases there is no guarantee that the biological
and physical data are co-located and the regression model cannot be used. A common and
pragmatic solution is to predict the physical variables at the locations of the biological variables
and then use the predictions as if they were observations. In this article, we show that this
procedure can cause potentially misleading inferences and use generalised linear models as
an example. We propose a Berkson-error model which overcomes the limitations. The differ-
ences between using predicted covariates and the Berkson error model are illustrated using
data from the marine environment, and a simulation study based on these data.

1. Introduction

One important goal of ecological research is to understand how ecological quantities are
related to the physical environment in which they reside. Common variations on this theme
include: species distribution modelling (e.g. Lehmann et al., 2002; Guisan et al., 2002, 2006,
all are editorials to special editions devoted to the topic), realised-niche delineation (e.g.
Chase and Leibold, 2003), community prediction/mapping (e.g. Leathwick et al., 2005;
Ferrier and Guisan, 2006), and biodiversity modelling (e.g. Foster and Dunstan, 2010).
The analytical methods used to perform these tasks range from simple to complex. The
complexity depends on the ecological quantity under consideration, the assumed functional
relationships, the assumed statistical model, and the number of variables used to delineate
the environment. They all have certain aspects in common: they relate biological data to
physical using a regression model or one of its extensions. Focus is typically on prediction
of the ecological quantity at spatial locations that are not sampled. We will do the same in
this paper.

Commonly, the physical variables used for delineation are not directly measured at the
locations of the ecological data as they often come from separate data sources. To facilitate
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the analysis, the physical variables are often predicted at the locations of the biological
data from the locations of the physical data using geostatistical methods. It is important
to note that the predictions will not be as variable as the actual observations would be.
This two-stage analysis is used in preference to forming a joint geostatistical model for
the biological and physical variables as the raw physical data are rarely made available
to the analysts of the biological data, due to inter-organisational data-ownership issues.
However, data products, such as predictions, are commonly made available. Examples from
the marine environment are the National Oceanographic Data Center’s World Ocean Atlas,
and CSIRO’s Atlas of Regional Seas.

It is not immediately clear what effect ignoring this extra level of variation will have
on the validity of the ecological models. The purpose of this paper is to demonstrate how
the extra variability can be included in the statistical model by specifying a Berkson-error
model (see Carrol et al., 2006) and to compare it to the commonly performed analysis. We
use the popular class of generalised linear models (GLMs; McCullagh and Nelder, 1989) to
demonstrate the effect of the often-ignored Berkson errors. GLMs are analytically tractable
and often form the basis for more complicated models.

The approach taken here differs from previous work that considers measurement er-
ror in ecological models (Elston et al., 1997; Van Niel and Austin, 2007). Those studies
all consider extra uncertainty in the physical observations arising from observations with
imprecise measuring equipment – a classical measurement error model (see Carrol et al.,
2006). In this paper we add to this discussion by considering a previously ignored source
of uncertainty, that associated with not observing the covariate data directly. This source
of uncertainty is extremely prevalent in ecological modelling and cannot be captured by
a classical measurement error model. The ecological problem under consideration here is
similar to the misalignment problem in environmental epidemiology studies, see Lopiano
et al. (2011) for a recent review and comparison. However, in those studies the statistical
model is linear, which simplifies the problem substantially. The ecological problem cannot
be tackled directly by these methods and many of the results are not applicable to non-linear
models.

In the remainder of this article we describe some example data from the marine en-
vironment (Section 2) and outline models to analyse such data (Section 3). Analytical
approximations to the bias induced from using predicted covariates are presented in Sec-
tion 4 and the sizes of the biases for the example data are given in Section 4.2. Section
5 describes a simulation study and the example data are analysed in Section 6. Section 7
provides a summary and discussion. The code and the synthetic data, described in Section
2.1, are available from the journal’s website as an R-package called SEIC.

2. Great Barrier Reef Data

Data were collected during a survey of the Great Barrier Reef (GBR) lagoon off the north
eastern coast of Australia (Pitcher et al., 2007). The purpose of data collection was to
characterise biodiversity for conservation purposes. These data were chosen for use in this
study as they are atypical in that they are thorough and extensive for both biological
and physical data and in that the physical data were collected at the same locations as
the biological data. This enables us to mimic situations where prediction of covariates is
necessary through degradation of the covariate data.

There were 1189 sites sampled using benthic sleds (biological data) in conjunction with
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Fig. 1. Left panel: Survey locations within the Great Barrier Reef lagoon off Queensland, Australia.
Right panel: A sub-sample of 200 locations taken completely at random.

sediment samples and sonar measurements (physical data); see Figure 1 for locations. The
biological data considered here are the presence/absence of a Bryozoan species Cheilostom-
ata hippaliosina and species-richness (number of species per square metre). The physical
data considered in this paper were depth, %carbonates and %mud, and were chosen due
to their high association with the two biological variables under consideration. The %mud
and the %carbonates variables are not subject to any sum constraint. We transform the
physical variables using the arcsine square-root transform (percentage variables) or the log
transform (depth) but we continue to use the original variable names. The transformations
are performed so that they vary over the entire real numbers, which simplifies the geosta-
tistical modelling. For the purposes of this study the scale of the covariates is immaterial.

2.1. Degraded Data
We synthesise a survey by randomly sampling a set of 200 locations from the 1189 locations
of the GBR data (see Figure 1 for locations). The synthetic survey is considered to be
for biological data, while the locations in the original data (those that are not included in
the synthetic survey) are considered to be the locations where physical data are measured.
This mimics the data collection scenario under consideration. The physical variables at the
locations of the synthetic samples are predicted based on the physical variables at the other
locations in the GBR data. Prediction was performed using model-based kriging (Diggle and
Ribeiro, 2007) with covariance structure defined by a normal convolution process (Higdon,
2002; Ver Hoef et al., 2004). Prediction covariances are also calculated. All cross-covariances
are assumed to be zero, but we note that this is not a requirement of the methods used in
this manuscript. Details of the prediction process are given in the Appendix.
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3. Statistical Models for Macroecology and Biogeography

A common form for the statistical analysis that relates an ecological quantity to physical
variables is that of a regression analysis and its many extensions. The regression model
relates the expectation of the ecological quantity measured at n locations, y say, as a
function of p physical covariates (arranged into the n × p matrix X with ith row x>

i ). A
completely general formulation for the mean model is

E (yi|xi) = h(xi), (1)

where the function h(xi) maps the ith location’s covariates, xi, to a scalar. It is common to
assume that, conditional on the covariates, the observations y are independently distributed.
In general, we believe this to be a reasonable assumption as the range of spatial dependence
due to ecological sources is typically much smaller than the density of the samples. However,
there are cases where this assumption will not hold, an example is animal movement data.
Model (1) encompasses many that are used in the literature including generalised linear
models (GLMs; see McCullagh and Nelder, 1989). The assumed probability density function
(PDF) for model (1) is

f(y|X) =

n∏
i=1

f(yi|xi), (2)

where f(yi|xi) is the PDF for location i.
Model (1) assumes that the p covariates are observed at the locations where the ecological

variables are observed. Frequently, this assumption does not match reality and so the matrix
X is replaced by predictions from a geostatistical model. This transforms (1) to

E (yi|x̃i) = h(x̃i), (3)

where x̃i is the vector of predicted covariates at location i.
An appropriate statistical model must account for the structure of the observations

and, in particular, for the fact that the observed ecological and physical variables are not
co-located. A natural way to do this is by considering the conditional distribution of the
ecological variables given the observed physical variables. With all the observed physical
variables given in the design matrix Xo the conditional PDF is

f(y|Xo) =

∫
f(y,X|Xo)dX

=

∫
f(y|X,Xo)f(X|Xo)dX

=

∫
f(y|X)f(X|Xo)dX

=

∫ ( n∏
i=1

f(yi|xi)

)
f(X|Xo)dX, (4)

where f(X|Xo) is the predictive distribution defined from a geostatistical model for the
observations Xo. This derivation assumes that an ecological observation depends only on
the unobserved physical covariates at their locations. The PDF (4) is that for a Berkson-
error model, a model whose covariate uncertainty stems from observing a smooth version
of the actual variable (see Carrol et al., 2006, Chapter 1).
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There are direct parallels between this approach and a Bayesian approach. In particular,
there is now a set of random effects in the model (the Berkson errors), and these have to be
integrated over to make inference about the GLM’s parameters. The important difference
between the model in (4) and a full Bayesian model is that the GLM’s parameters are
treated as fixed. Hence it is a direct extension of the usual GLM model, one that is more
in keeping with the philosophy of the GLM than the Bayesian solution.

For likelihood inference the integral in (4) would have to be evaluated and subsequently
maximised. This is only analytically possible here for normal GLMs, since the geostatistical
model used assumes normality too (see the Appendix). However, in the next Section we
show that approximations to the first two moments of this distribution are available for
non-normal data. This enables assessment of the size of the bias terms that arise from
using plug-in values for the unobserved physical variables.

3.1. Estimation Methods for Berkson-Error Models
There have been many methods proposed for finding the maximum-likelihood estimates
from marginal PDFs, like that in (4). Special care needs to be used here as the dimen-
sion of the integrating variable is large with respect to the number of observations. The
method that we employ, Laplace importance sampling (LIS: Kuk, 1999; Skaug and Fournier,
2006), is quite effective but it is by no means the only solution. A notable alternative is
MCMC. However, given the dimensionality of the integral we do not expect that any in-
tegration method will provide a computationally inexpensive solution. Before settling on
LIS we experimented using MC maximum likelihood (MCML; see Diggle and Ribeiro, 2007,
Section 5.5.1) and Laplace’s approximation. We found that the MC error in MCML was
unacceptably large. Laplace’s approximation generally performed well but it occasionally
gave extreme estimates. In these cases the LIS behaved more predictably. We expect that
MCMC, like LIS, would produce good results but it remains untested here.

The LIS method is an extension of the well-known Laplace approximation where the inte-
grand in (4) is approximated by a multivariate normal with mean specified by the maximum
of the integrand and variance by the Hessian of the integrand calculated at the location of
the maximum. The Laplace approximation works well for many problems but not for all;
the accuracy depends on the accuracy of the underlying normal approximation. The LIS
method alters the Laplace approximation by using the integrand’s normal approximation
as a proposal distribution for integration by importance sampling (Kuk, 1999). Continuing
from (4), the approximate log-likelihood for the GLM’s mean parameters and its dispersion
parameter, τ and φ respectively, is

`[k](τ [k], φ[k];y) =
1

B

B∑
b=1

f [k](y|xb)
f [k](xb)

g[k](xb)
, (5)

where xb is a draw from the normal proposal distribution, g[k](xb). The k-superscript
on the densities in (5) is a consequence of iterative updating of the mean and dispersion
parameters of the integrand.

The LIS approximation, like the Laplace approximation, requires two levels of optimi-
sation. First, the maximum of the integrand must be obtained with respect to the random
effects. The integrand has the same form as a penalised likelihood and we use Newton-
Raphson for its optimisation. Once the normal approximation has been found, the marginal
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log-likelihood is obtained via importance sampling. For the optimisation of the marginal
log-likelihood with respect to the model’s parameters, we use derivative-free optimisation
(Nelder-Mead simplex). All optimisation was done using the function nlminb in R. Itera-
tion over these two optimisation steps is required. We consider the process converged when
the difference in successive iterations’ log-likelihood is less than 1e− 5.

Following Skaug and Fournier (2006) we choose a single set of standard normal random
variates x∗ that are used in all iterations. The importance samples for iteration b are given
by the multivariate transformation

xb = Qx∗ + x̃,

where x̃ is the vector of predicted covariate values, Q is the symmetric square root of(
−H [k]

)−1
where H [k] is the Hessian of the joint PDF of observations and unobserved

covariates (evaluated at the maximum). See Harville (1997, page 543) for a description of
the symmetric square root.

We suggest choosing a large number of samples to try and reduce the Monte Carlo error.
The number of samples is primarily dependent on the number of Berkson errors but will
also be dependent on other attributes of the data. For the data analysis in Section 6 we
use B = 50, 000, which appears sufficient. It is advisable to repeat the estimation process,
with a new set of random samples, to diagnose estimation abnormalities. Any differences
in parameter estimates between estimation runs could be attributable to two factors. The
first, which is likely to explain the majority of any differences, is due to varying the locations
of the Laplace importance samples. The second is due to the numerical optimisation routine
used for estimation and, hopefully, should not affect the estimates substantially.

An estimate of the variance-covariance matrix of τ̂ and φ̂ is available through the nega-
tive of the inverse of the Hessian of the log-likelihood. We use a five-point finite-difference
approximation to calculate the Hessian using the highly accurate method described in Forn-
berg and Sloan (1994, Table 1). The Hessian is not guaranteed to be positive definite and
any singularities are likely to be due to optimisation problems rather than problems with
the finite difference approximation. If singularities are encountered, our advice is to try
increasing the number of Laplace importance samples, this provides a better estimate of
the log-likelihood function.

4. Approximate Moments and Bias Terms

When specifying a statistical model, one of the critical choices is the form of stochastic
variation. It needs to reflect accurately the unexplained variation of the observations around
the modelled mean. If it is incorrectly specified then any inference and prediction from the
model may be misleading as the score equations will be biased. With this as motivation,
we now study the distribution of the observations, given that there are Berkson errors in
the covariates. The results are compared to the case where the Berkson errors are ignored.

We assume that the model for the ecological variable, conditional on the unobserved
physical variables, follows a GLM. This assumption is made for illustrative convenience but
we note that the results carry over, with slight extension, to any model that is a smooth
function of the covariates. The GLM assumption specifies

E (yi|xi) = h(x>
i τ ),
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where h(·) is the inverse link function, τ is a p× 1 vector of unknown parameters, xi is the
ith row of X, and the observations, y, are independently distributed. We assume that the
elements of the first and second moments of the distribution of the unobserved covariate
zj , conditional on its observed counterpart (jth column of Xo), are

E (zj |Xo) = µj and var (zj |Xo) = Σj .

In practice the quantities µj and Σj are unknown and must be estimated. We perform
estimation via univariate geostatistical modelling, described briefly in Section 2.1 and in
more detail in the Appendix.

Let x̃i and Vi be the conditional expectation and variance of xi. Note that x̃i is a vector
that consists of the ith row of each of the individual covariates’ expectations (µj), and the
variances Σj and Vi will share corresponding elements. The conditional expectation of the
biological outcome yi is

E (yi|Xo) = E
(
E (yi|X)|Xo

)
≈ E

(
h(x̃>

i τ )

∣∣∣∣Xo

)
+ E

(
1

2
h′′(x̃>

i τ )(xi − x̃i)
> (ττ>) (xi − x̃i)

∣∣∣∣Xo

)
= h(x̃>

i τ ) +
1

2
h′′(x̃>

i τ )τ
>Viτ , (6)

where h′(s) and h′′(s) are the first and second derivatives of h(s) with respect to s. Using
the predicted covariates as plug-in values will give biased expected values for the ecological
model unless one of two conditions are met:

• the inverse link function is linear, or

• the quadratic form (τ>Viτ = 0) is zero, which can occur when τ = 0 or when Vi = 0.
This occurs when the ecological variables are not related to the physical variable or
when the physical variables are measured with certainty.

None of these conditions can be guaranteed as they imply: 1) a potentially inappropriate
model (linear link); 2) no relationship of biological data with physical data; or 3) prediction
of covariates with zero prediction variance. The last condition may hold approximately if
the physical data’s density is sufficiently high. The remaining question is not about the
presence of bias, rather it is about the size of the bias.

Let v∗
(
x>
i τ
)
= v

(
h(x>

i τ ), φ
)
be the GLM’s variance function expressed as a function

of the linear predictor, where the function v(·, φ) is the standard GLM variance function
(see McCullagh and Nelder, 1989). The conditional variances and covariances are

var (yi|Xo) = E
(
var (yi|xi) |Xo

)
+ var

(
E (yi|xi) |Xo

)
≈ E

(
v∗
(
x̃>
i τ
)
|Xo

)
+ var

(
h′(x̃>

i τ )(xi − x̃i)
>τ |Xo

)
= v∗

(
x̃>
i τ
)
+
[
h′(x̃>

i τ )
]2

τ>Viτ , and (7)

cov (yi, yi′ |Xo) ≈ 0 + h′(x̃>
i τ )h

′(x̃>
i′ τ )τ

>Vii′τ , (8)

where Vii′ is the matrix of covariances and cross-covariances for locations i and i′. In both
(7) and (8) the first term is that expected from the GLM using predicted covariates and
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the second term can be seen as a bias adjustment. Analogous to the bias terms for the
expectation, these can be zero only when there is no relationship between ecological and
physical variables, or when there is no variation in the prediction for the physical variable.

Failure to account for the variability of the predicted covariates can affect the assumed
distribution of the biological outcomes in three ways. First, the assumed expectations do
not represent the actual expectations and bias may be present. Second, the variance is
inflated in comparison to the assumed variance giving a false level of confidence. Third,
the covariances are non-zero implying an over-estimate of the effective degrees of freedom
available. The second and third points together imply that any test of significance is likely
to have unduly high power for hypothesis testing.

4.1. Accuracy of Approximations
The approximations (6), (7) and (8) arise from a low-order Taylor series expansion around
the geostatistical prediction of the covariates. Taylor series approximations are commonly
used as they provide a way to approximate non-linear functions by an easy to manipulate
polynomial. Higher order terms will make the approximation more accurate but should
have diminishing contribution, especially for well-behaved functions like those used for link
functions in GLMs. The higher order terms, as a collective, should not have a positive or
negative net effect on the bias in the expectation, variance and covariance. Even if there
was a net effect, it should be less than the magnitude of the terms already considered.

The accuracy of the approximation will depend on how close the actual, unobserved
values of the covariate are to their geostatistical predictions. If the predictions are close
then the approximations should suffice. However, if there are large discrepancies then the
approximation, and the resulting bias terms, may be questionable.

There were two main reasons for not considering higher order approximations. The first
is that the simplicity of the low-order approximations provides straight-forward qualitative
interpretation of the nature of the bias, even if the exact numerical values are inaccurate
in certain situations. The second is that the higher order terms are very difficult to derive
and compute in a multivariate function as they are based on expectations and variances of
quadratic forms (and higher order products) of multivariate variables.

4.2. Size of Bias for GBR Data
We investigate the size of the bias terms by considering the synthetic survey described in
Section 2. Two situations are considered: a Bernoulli GLM for the presence/absence of the
species of the Bryozoan Cheilostomata hippaliosina, and a Poisson GLM for species-richness.
The GLM’s parameter values were obtained from an analysis of the observed data on the
observed covariates. This analysis cannot typically be performed as the physical data are
not directly measured. We use these estimates for simulation as they are likely to be a good
representation of the true parameter values.

The relative size of the bias terms for expectation and variance are calculated for each
location as the bias adjustment term divided by the expected moment if the GLM with
predicted covariates is used (see equations (6) and (7)). The biases in covariances are
summarised as correlations. A summary of the relative biases is given in Table 1.
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Table 1. Summary of relative bias taken from (6) and (7), and correlations from (8) for

Bernoulli and Poisson GLMs. Relative bias is defined to be the bias adjustment terms

in (6) and (7) divided by that expected from a GLM using predicted covariates. The

correlation measure is amongst all observations and is based on the covariance (8) and

variances (7). The correlation is not relative but the simple GLM assumes all to be zero.

Min 1st Quant. Median 3rd Quant. Max

Expectation –0.077 0.085 0.245 0.402 123.300

Bernoulli Variance 0.000 0.017 0.079 0.195 2.858

Correlation –0.071 0.000 0.000 0.000 0.407

Expectation 0.014 0.031 0.036 0.042 0.162

Poisson Variance 0.812 2.569 3.816 6.223 14.990

Correlation –0.064 0.000 0.000 0.000 0.394

For the Bernoulli GLM the bias in the expectation is substantial and sometimes extreme.
The bias in the variance for the Bernoulli GLM can be large, although it is generally
moderate. For the Poisson GLM, the bias in the variance is large but not the bias in the
expectation. In both models the correlation induced from ignoring the variance in covariate
predictions is typically small, but occasionally it is quite large and positive.

5. Bias in Parameter Estimates – Simulation Study

The performance of the approach was investigated using two simulation studies, both based
on the synthetic GBR lagoon data (Section 2). The first simulation study is based on the
presence/absence of the Bryozoan Cheilostomata hippaliosina, and the second simulation is
based on species-richness. These are modelled by a Bernoulli and a Poisson GLM respec-
tively, with parameter values given in Tables 2 and 3. Each simulated data set is created
by first simulating covariates as a realisation of the spatial process estimated from the geo-
statistical models and then simulating biological data conditional on the simulated physical
covariates. We fitted three models to every simulated data set: 1) a GLM of the biological
data on the predicted covariates, 2) a Berkson GLM using LIS, and 3) a GLM of biological
data on the actual simulated covariates. We label these models as ‘pred-GLM’, ‘Berk-GLM’
and ‘true-GLM’ respectively. The third model cannot be fitted to real data as the observed
covariates are not available. We include this model here to show the behaviour of the model
that the analyst would like to fit, if he/she could.

The 1000 sets of estimated parameters and their theoretical standard errors are sum-
marised in Tables 2 and 3 for the Bernoulli and Poisson models respectively. We inspect the
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mean of the estimates against the values used for simulating, and compare the empirical
standard deviation of the estimates against the mean of the theoretical standard errors.
These comparisons will indicate if there is bias in an estimate’s mean and standard error
attributable to ignoring prediction variance.

The Bernoulli simulation indicates that all three methods produce biased means. This
is surprising as we would typically expect that the true-GLM would be unbiased. How-
ever, for any simulated data set, the realised physical covariates will be correlated through
space, which will cause information loss and increase the chance of extreme estimates. The
mean estimates from the pred-GLM were always lower than the means from the other two
methods, which were quite close to each other for all parameters. The estimates’ empirical
standard deviation and the mean theoretical standard error matched reasonably well but
were slightly larger for pred-GLM and true-GLM. Also the standard errors for the Berk-
GLM were larger than those for the other models, reflecting the allowance for uncertainty
in the covariates. These results follow from the approximate distribution derived in Section
4.2 (Table 1). There is substantial bias in expectation and negligible bias in the variance.

The Poisson simulation gave different, but complementary, results from the Bernoulli
simulation. The parameter estimates from all methods were essentially unbiased for the
mean, except for the intercept estimate from the pred-GLM, Table 3. This estimate is
slightly inflated, which corresponds to a slight and relatively constant bias in the distribution
of the observations (see Table 1). The empirical standard deviation and the theoretical
standard error from the Berk-GLM and the true-GLM agreed well, indicating that all
sources of variation were accounted for (see Table 3). However, these two statistics do not
agree for the pred-GLM; the theoretical value is only about half the empirical value. This
indicates that an analyst, using predicted covariates in a GLM, will obtain estimates that
have unrealistically high confidence.

The reason for the differences in the results for the Bernoulli and Poisson simulations
can be explained by considering the approximations in Section 4. The behaviour appears
to be dictated by the link function of the different models. Consider the Poisson case first
(log link). The bias in an observation’s expectation is proportional to exp(η), where η is
the linear predictor, and the bias in an observation’s variance is proportional to exp(2η).
The bias in variance is larger and it follows through to the estimates. Now consider the
Bernoulli case with a logit link. The bias terms are proportional to π(1 − π)(1 − 2π) and
π2(1 − π)2 for the mean and variance bias respectively, with π the fitted value. Bias in
expectation is zero if π = 0.5. So, if the set of fitted values has mean near zero then this
term should average out. This is the situation in this simulation but it will not always be
the case.

Combined, the two simulations suggest that bias in parameter estimates and their stan-
dard errors can be biased if predicted covariates are used as a direct substitute for the
unobserved measurements. The presence of bias in the estimates depends on the conditions
mentioned in Section 4. The size of bias appears to depend on the sign and size of the
derivatives of the link function, the amount of variation in the covariates and the size of the
parameter values.
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Table 2. Summary of parameter estimates for the Bernoulli simulation study (1000 sim-

ulations). The second column contains the values used to generate the individual data

sets. The three models types are: 1) a GLM using predicted covariates (pred-GLM), 2) a

Berkson-error GLM (Berk-GLM), and 3) a GLM with each simulation’s realised physical

covariates (true-GLM).

Covariate Value Model Mean(±SE∗) Estimate SD† Mean SE‡

pred-GLM –2.342(0.011) 0.359 0.347

Intercept –2.550 Berk-GLM –2.691(0.017) 0.538 0.539

true-GLM –2.669(0.013) 0.426 0.396

pred-GLM 0.244(0.011) 0.337 0.326

Depth 0.266 Berk-GLM 0.278(0.012) 0.389 0.386

true-GLM 0.283(0.010) 0.314 0.303

pred-GLM 0.650(0.009) 0.300 0.287

%Carbonates 0.704 Berk-GLM 0.763(0.011) 0.360 0.352

true-GLM 0.744(0.009) 0.278 0.272

pred-GLM –1.691(0.013) 0.396 0.392

%Mud –1.841 Berk-GLM –1.916(0.017) 0.549 0.570

true-GLM –1.923(0.012) 0.391 0.376

∗Standard error of the mean of all simulated data sets’ estimates

†Standard deviation of all simulated data sets’ estimates

‡Mean asymptotic standard error (average of standard errors from each data set)
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Table 3. Summary of parameter estimates for the Poisson simulation study (1000 simulations). The

second column contains the values used to generate the individual data sets. The three models

types are: 1) a GLM using predicted covariates (pred-GLM), 2) a Berkson error GLM (Berk-GLM),

and 3) a GLM with each simulation’s realised physical covariates (true-GLM).

Covariate Value Model Mean(±SE∗) Estimate SD† Mean SE‡

pred-GLM –1.706(≤0.001) 0.023 0.010

Intercept –1.742 Berk-GLM –1.741(≤0.001) 0.022 0.023

true-GLM –1.742(≤0.001) 0.010 0.010

pred-GLM –0.070(≤0.001) 0.034 0.013

Depth –0.071 Berk-GLM –0.070(≤0.001) 0.030 0.030

true-GLM –0.070(≤0.001) 0.011 0.011

pred-GLM 0.325(≤0.001) 0.036 0.013

%Carbonates 0.323 Berk-GLM 0.323(≤0.001) 0.033 0.031

true-GLM 0.323(≤0.001) 0.010 0.011

pred-GLM –0.486(≤0.001) 0.029 0.012

%Mud –0.487 Berk-GLM –0.484(≤0.001) 0.023 0.024

true-GLM –0.487(≤0.001) 0.010 0.010

∗Standard error of the mean of all simulated data sets’ estimates

†Standard deviation of all simulated data sets’ estimates

‡Mean asymptotic standard error (average of standard errors from each data set)
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Table 4. GBR data: Parameter estimates and standard errors for a GLM using the predicted covariates

(pred-GLM) and a GLM with Berkson errors (Berk-GLM). Two GLMs were considered, a Bernoulli GLM

for presence/absence data and a Poisson GLM for species-richness data.

Bernoulli Poisson

Covariate Model Estimate∗ SE∗ Esti-SD† Estimate∗ SE∗ Esti-SD†

pred-GLM –2.536 0.376 – –1.717 0.010 –

Intercept
Berk-GLM –3.102 0.657 0.004 –1.971 0.029 0.002

pred-GLM –0.230 0.332 – –0.026 0.013 –

Depth
Berk-GLM –0.270 0.412 0.002 –0.409 0.049 0.011

pred-GLM 1.053 0.326 – 0.301 0.013 –

%Carbonates
Berk-GLM 1.267 0.438 0.002 0.766 0.013 0.013

pred-GLM –1.769 0.432 – –0.435 0.012 –

%Mud
Berk-GLM –2.192 0.676 0.005 –0.926 0.049 0.007

∗Taken from the first run of estimation algorithm

†Standard deviation of 20 runs of estimation algorithm

6. Analysis of the Great Barrier Reef Data

The results from the simulation study in Section 5 show that the GLM with Berkson-errors
is a more realistic representation of the variation in the data. In this section we show how
different the estimates from the two models can be for the synthetic data from the GBR
lagoon (see Section 2). We fit the two models (predicted covariates GLM and Berkson error
GLM) for both the presence/absence of the Bryozoan Cheilostomata hippaliosina and for
species-richness. The resulting estimates are given in Table 4.

The two sets of estimates for the Bernoulli GLM are different but their standard errors
are large with respect to the differences (Table 4). It is impossible to say from this single
analysis if there is bias in the estimates. However, the estimates and their standard errors
from the Berkson GLM are always larger than those from the GLM using predicted covari-
ates. This is consistent with the simulation study in Section 5, even though the conclusions
are not as compelling.

The two sets of estimates for the Poisson GLM are also quite different, as are their
standard errors. The increase in standard error (except for %carbonates) is consistent with
the simulation study, although the size of the increase is substantially larger for the real
data. We note that the results presented in Table 3 are averages and there is no guarantee
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that each realisation will match, as is the case in Table 4. However, the differences cannot
be totally attributable to this effect – they are too large with respect to the simulation
study. The proportional differences in the standard errors in the simulation study were
almost never observed to be as large as those observed in Table 4, except for %carbonates
which was never as small. We can only speculate why this has occurred but it is almost
certainly due to some unknown and unmodelled attribute of the data.

The variance in the parameter estimates was investigated by performing the estimation
multiple (20) times. This helps diagnose the combined effect of Monte Carlo error in the LIS
routine and estimation differences. The standard deviation between the 20 runs is given in
Table 4. These values are small in comparison to the size of the estimate. For the purposes
of this paper, this amount of estimation error is satisfactory.

Quantitative ecologists will typically use the estimated model to produce predictions on a
dense grid of locations throughout the study region. These predictions are often displayed
as a map. We now perform this prediction procedure for the predicted covariates and
Berkson GLMs. In both cases we find the prediction and its standard error by simulation:
we generate 1000 random draws from the asymptotic distribution of the estimates and use
these to form a set of predictions at each location. We then compute the mean and standard
deviation of the set of predictions for each location. For the predicted covariates GLM the
predictions are obtained in the usual way by using the inverse link function on the randomly
generated linear predictor. For the Berkson GLM the predictions are obtained using the
expectation in (6). Different prediction methods are used as a reflection of the fact that
the different models make different assumptions about the nature of the covariates. The
predictions and their standard errors are compared in Figure 2.

The point predictions from the two models for the Bernoulli data are similar but the
standard errors for the GLM using predicted covariates are smaller (Figure 2). That is,
the point predictions from the predicted covariates GLM appear approximately correct but
there is too much confidence placed in them. The point predictions from the Poisson model
exhibit a substantial amount of bias, as do their standard errors (Figure 2). The predictions
from the predicted covariates GLM can be substantially less than those from the Berkson
GLM and the respective standard errors are nearly always substantially smaller. In both
the Bernoulli and particularly the Poisson models there is potential for incorrect inference,
which could lead to poor resource management decisions.

7. Summary and Discussion

In this paper we have identified and explored the effect of ignoring prediction variance
when spatial predictions are used as covariates in a GLM. Our motivation was ecological
modelling where the GLM relates biological data to spatially predicted physical data. We
show that when the prediction variance is ignored the mean and variance of the sampling
distribution of the biological data are biased. We expect that other, more complicated,
types of models will produce similar results to those obtained for GLMs.

The bias in the sampling distribution transfers to bias in parameter estimates when
the simple two-stage analysis is performed. Sometimes the bias manifests itself in the
point estimates, sometimes in the estimates’ standard errors, and sometimes both. We
present a Berkson-error GLM for overcoming the bias in estimates and describe a method
of estimation. A comparison of the estimates from the two models for the synthetic GBR
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Fig. 2. A comparison of outcome predictions obtained from the predicted covariates GLM and the

Berkson GLM. If the outcome predictions and their standard errors are the same then all points will

lie on the 45◦ line. Left panels give predictions for the Bernoulli model and right panels are for the

Poisson model. Upper panels are point predictions and lower panels are their standard errors.
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data indicates that the bias is identifiable in real data, as well as simulated data.
The results presented in this paper can be used to provide an appropriate analysis

of data that is not co-located. Further, they identify when a simple analysis could be
performed, via a GLM with predicted covariates. The more complex analysis will add little
rigour when the covariates are predicted with low variance, either through the observed
covariates being located near the biological observations or from a spatially dense set of
covariate observations. If there is substantial prediction variance in the covariates then the
more complex analysis, described in Section 3.1, should be undertaken. Also, the results
can guide planning of future surveys. In particular, analysis could be simplified by placing
biological samples in areas of dense physical samples and/or close to the physical samples.
Of course, ease of analysis is not the only consideration in survey design.

The dependence of the biological sampling distribution on the prediction mean and
variance highlights that the geostatistical model is an important component of the modelling
procedure. If the geostatistical models are inefficient then this will directly lead to inefficient
models for the biological data too. If the predictions are provided by another researcher
or organisation then a great amount of faith in those researchers and their practices is
implicitly required.
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Appendix – Geostatistical Methods

We choose to formulate the task of predicting the physical variable in new locations as
prediction of random site effects from a univariate geostatistical model (see Stein, 1999;
Haskard, 2007; Diggle and Ribeiro, 2007). We use the usual mixed model process of 1)
estimating the parameters of the geostatistical model (variances, and fixed effects), and 2)
predicting the site random effects with plug-in values of the parameters.

Geostatistical prediction using mixed models requires the specification of a covariance
structure (related to the classical variogram model); here we ‘construct’ a covariance struc-
ture rather than ‘specifying’ one (Higdon, 2002; Ver Hoef et al., 2004). Construction allows
greater flexibility, and applicability, of an individual model through greater variability in the
covariance structures permitted. The covariance structure is constructed using a moving
average process over independent Gaussian effects specified on a predefined grid.

The mixed model for any one of the covariates (using simple kriging) is

zo = α+Ku+ e
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where zo is the n×1 vector of observations for the covariate, α = α1n is the overall mean of
the covariate, K is a n×k matrix for the spatial process, u is a k×1 vector of independent
normal effects with zero mean and variance σ2

o , and e is a vector of residuals with zero
mean and variance σ2. The matrix K is a moving average smoothing matrix that relates
the locations of the observations to the locations of the spatial grid. The (i, j)th element
of K is the kernel density of the ith observation centred at the jth grid point. In our
implementation we choose a Gaussian kernel with both variances and covariance unknown.
Hence, the matrix K is itself a function of unknown variance parameters which must be
estimated along with the mean α, the spatial variance σ2

o , and the residual variance σ2.
We perform estimation using a profile (restricted-)likelihood approach. First, given the

matrix K, updates are made for the variance components and the mean. Second, given the
variance components and the mean, the matrix K is updated. These two steps are iterated
until convergence of parameters and log-restricted-likelihood.

The estimated variance components, fixed effects and K matrix are then used as plug-in
values for formation of the spatial predictions. The predictions and prediction variances at
a new set of m sites are given by

Ê (zm|zo) = µ̂1m + Σ̂moΣ̂
−1
oo (xo − µ̂1n) and

v̂ar (zm|zo) = Σ̂mm − Σ̂moΣ̂
−1
oo Σ̂om

where

v̂ar

([
zm
zo

])
=

(
Σ̂mm Σ̂mo

Σ̂om Σ̂oo

)
.

The usual kriging expression can be obtained by substituting α̂ with its generalised least
squares estimator (see Haskard, 2007). The estimated joint-variance matrix is obtained
from the specification of the linear mixed model. As an example consider the variance for
the observed values of the covariate

Σ̂oo = σ̂2
oK̂K̂> + σ̂2In.
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